

College of Agriculture and Life Sciences Cornell Cooperative Extension

In-Depth Look: Managing Diamondback Moth in the Face of Insecticide Resistance

Brian Nault¹ and Christy Hoepting²

¹Dept. of Entomology, NYSAES, Geneva, NY ²CCE Cornell Vegetable Program

Empíre Producers Expo Cabbage Sessíon: Syracuse, NY - January 17, 2017

Diamondback Moth (DBM)

- Host range and damage
- Life history (life cycle and biology)
- Management strategies
- Results from a 2016 insecticide trial
- Guidelines for managing DBM following IRM principles

Diamondback moth (DBM) (*Plutella xylostella*)

- ➤ Estimated cost for managing DBM worldwide is US\$4–5 billion annually, while estimated annual cost in the US is US\$150–200 million
- ➤ Resistant to 95 insecticide active ingredients in >20 countries (as of 1/16/17)

Diamondback moth (DBM) (*Plutella xylostella*)

➤ A global pest that is distributed throughout North America

Crops Attacked by DBM

- Broccoli
- Brussels sprouts
- Cabbage
- Canola (rapeseed)
- Cauliflower
- Chinese cabbage
- Collards
- Kale
- Kohlrabi

- Mustard
- Radish
- Saishin
- Turnip
- Watercress

Diamondback moth damage to cabbage wrapper leaves

Diamondback moth damage to cabbage head

Life Stages

Life Cycle

One generation = 28 to 67 days

Summarized by Philips et al. 2014

Number of DBM Generations In New York

Life History

 Diamondback moth is not known to overwinter successfully in northern North America; must migrate from the south to the north every year

➤ Diamondback moth reported to migrate from southern US into northern North America

Life History

 Diamondback moth imported into New York on transplants grown in southern US

- Survey of cabbage transplants coming into NY from GA and FL (1989- 1992)- 34,013 samples
- Company seasonal averages ranged from 1.3 to 12.0 DBM per 100 transplants
- DBM were <u>highly resistant</u> to methomyl (Lannate) and permethrin (Ambush)

Life History

- Why would Diamondback moths in the southern US be resistant to insecticides?
 - > DBM has up to 15 generations/year in GA and FL
 - ➤ Produce a spring crop and a fall crop; collards grown year round; 21,000 acres of cole crops in GA
 - > Insecticides are the major tool for management
 - From a reliable source in Georgia: "We have had reported problems with every product registered for DBM within the last year (as has Florida). We have also had good control with most every product. [Control generally best with Proclaim, Exirel and the Bts.]"

DBM Management

Plant Resistance

Chemical Control

Cultural Control

Biological Control

DBM Management

Plant Resistance

Chemical Control

Cultural Control

Biological Control

Cultural Control

• Plant a clean crop - obtain and transplant DBM-free plants

Avoid 18 wheels and a truckload of diamondbacks!

Cultural Control

 Intercropping – not for large commercial plantings; plant non-cole crops adjacent to cole crops

tomato

cabbage

Cultural Control

 Trap cropping – not for large commercial plantings; plant more attractive trap crop adjacent to cash crop

Trap crop: collards

Cash crop: cabbage

Biological Control

• Conserve natural enemies — minimize use of broad-spectrum insecticides (e.g., pyrethroids, OPs, carbamates); natural enemies can reduce DBM populations by >80%

parasitic wasp

ground beetle

Chemical Control

 Use insecticides – apply only when necessary and follow IRM principles

Monitoring and Scouting

Pheromone-baited
 sticky traps – monitors
 adult activity

- Scout field visually
 - ➤ For fields 5-25 acres -sample 10 sites and 4 plants per site per field (40 plants)

Action Thresholds

% Cabbage plants infested

Crop Stage	Kraut	Fresh & Storage
Seedling (cotyledon)	20	20
Early vegetative to cupping	30	30
Early head to harvest	30	15

Insecticide options for DBM control in New York's cole crops

Group (IRAC group)	Active ingredient	Product
Bacillus thuringiensis (11A)	B.t. var. aizawai	Agree WG; XenTari
	B.t. var. kurstaki	Dipel DF, Biobit HP, others
Carbamates (1A)	methomyl	Lannate LV
Diamides (28)	chlorantraniliprole	Coragen
	cyantraniliprole	Exirel, Verimark
Diamide (28) + Pyrethroid (3A)	chlorantraniliprole + lambda-cyhalothrin	Voliam Xpress/Besiege
GluCl modulators (6)	emamectin benzoate	Proclaim WDG
Oxadiazines (22A)	indoxacarb	Avaunt
Pyrethroids (3A)	lambda-cyhalothrin	Warrior II Zeon Technology
Spinosyns (5)	spinetoram	Radiant SC

2017 Cornell Integrated Crop and Pest Management Guidelines for Commercial Vegetable Production

DBM Management

Plant Resistance

Chemical Control

Cultural Control

Biological Control

Future DBM Management

- Genetically modified crops
 - using the Bt gene to protect
 vegetable crops (e.g. Bt sweet corn
 and Bt eggplant in Bangladesh)

- Sterile insect technique
 - would require releasing genetically modified DBM (infertile) to mate with wild females, which would eventually reduce population

Introduction to DBM Problem in western New York in 2016

Fields disked up due to uncontrollable DBM populations

- Cabbage field where transplants were imported from Georgia
 - Field disked up in early September
- Another field 1/8th of a mile away
 - Bare root transplants produced in local seedbed
 - DBM population spiked ~ 5 weeks after planting
 - Field disked up in mid-September
- Why were DBM populations uncontrollable?

Severe DBM Infestation: Worm and frass contaminants

Grower spray program

Storage cabbage

Date	Insecticide Trade Name	IRAC Class
July 18-21 (week #1)	Transplanted Lorsban at planting for OM	
Aug-4 (15 DAP)	Sniper	3A
Aug-15 (11 days later)	Lannate SP + Agree WG	1A 11A

Color-coding according to IRAC insecticide mode of action

Grower spray program

Storage cabbage

Date	Insecticide Trade Name	IRAC Class
Aug-20?	Voilam Xpress + Lannate SP	3A, 28 1A
Aug-25	Aug-25 Proclaim + Swagger	
DBM population explodes!		

Color-coding according to IRAC insecticide mode of action

Grower spray program

Storage cabbage

Date	Insecticide Trade Name	IRAC Class
Aug-29 (4 days later)	Radiant	5
Sep-3 (5 days later)	Avaunt + Lannate SP	22A 1A
Sep-7 (4 days later)	Proclaim	6
Sep-10	Disk up field Set up insecticide trial	

Insecticide Spray Trial

September 21, 2016

Insecticide Spray Trial: Treatments

No.	Product and rate per acre	Active ingredient	IRAC group
1.	Untreated		
2.	Lannate SP 1 lb + Agree WG 1 lb*	Methomyl Bt subsp. <i>aizawai</i> (strain GC- 91)	1A – carbamate 11A – Bt
3.	Lannate SP 1 lb	methomyl	1A – carbamate
4.	Avaunt 3.5 oz	indoxacarb	22A - oxadiazin
5.	Radiant 10 fl oz	spinetoram	5 - spinosyn
6.	Coragen 7.5 fl oz	Chlorantraniliprole	28 - diamide
7.	Voliam Xpress 9 fl oz	Chlorantraniliprole + lambda cyhalothrin	28 - diamide 3A - pyrethroid
8.	Proclaim 4.8 oz	Emamectin benzoate	6 - avermectin
9.	Warrior II Zeon Technology	Lambda cyhalothrin	3A - pyrethroid

- Used maximum labeled rates for all treatments except *
- LI700 0.25% v/v included in each treatment

Insecticide Spray Trial: Procedures

- Small-plot randomized complete block design
 - 4 replications
- Individual plot size: 4 rows of cabbage x 10 ft long
 - Collect data from inside 2 rows only
- 2 sprays (A & B) 1 week apart for each treatment
 - Sep-15, Sep-21
 - Lannate + Agree only got 2nd app of Agree
- CO₂ backpack sprayer; 40 gpa; 28 psi
- Evaluations: 1 week after each spray
 - No. DBM of each of 6 plants per treatment
 - DBM Stages: small larvae (<0.75 cm), large larvae (>0.75 cm), pupa
 - Location on plant: head, wrapper/outer frame leaves

All Stages of DBM Present

Relative Distribution of DBM Stages in Whole Plant Untreated

DBM per plant

32
DBM per plant
= 33% increase

Relative Location of DBM (larvae + pupa) in Whole Plant <u>Untreated</u>

After First Spray (7 DAT A)

After Second Spray (7-8 DAT B)

DBM per plant

32
DBM per plant
= 33% increase

What controlled DBM (all sizes)? After 1st Spray

Total Number of DBM Larvae (all sizes) Per Whole Plant (head & leaves): 6 DAT A

What controlled DBM (all sizes)? After 2nd Spray

Total DBM Larvae (all sizes) Per Whole Plant (head + leaves): 7-8 DATB

After 1 spray

After 2 sprays

After 1 spray

After 2 sprays

After 1 spray

After 2 sprays

Total DBM Larvae in Whole Plant (head & leaves)

Purple Numbers: IRAC insecticide classes

After 1 spray

After 2 sprays

After 1 spray

After 2 sprays

 Evaluated DBM control of large larvae, small larvae, pupa, DBM in the head and in wrapper leaves

Generally:

- Better control was achieved after <u>2 sprays</u> compared to after <u>1 spray</u> (increase control by 10-30%; 2-3 more worms)
- Larvae in the head were better reduced than those in the wrapper leaves, especially after 1 spray
 - Easier target then DBM on undersides of wrapper leaves

- Proclaim was the only insecticide that consistently provided significant control of DBM
 - After 1 and 2 sprays
 - All stages including pupa
 - In head and wrapper leaves
- Radiant also provided significant control of DBM
 - After 1 and 2 sprays
 - Did not prevent progression to pupa
- Lannate SP + Agree (2nd app only) provided significant control of DBM only after 2 sprays
 - Did not prevent progression to pupa
- Lannate SP provided significant control of large larvae (49%) and total larvae (31%) per plant after 2 sprays
 - Held DBM population at same level from 1st to 2nd spray
 - Mediocre activity (either due to it being a weaker material/overwhelmed by DBM pressure, or early signs of resistance)

Coragen, Voliam Xpress, Warrior and Avaunt FAILED to control DBM

- DBM populations increased between 1st and 2nd sprays
- Coragen had significantly higher DBM than the untreated
 - 39% higher Total larvae in the wrapper leaves after 1st spray
 - 45% higher large larvae per whole plant after 2nd spray

- These results <u>strongly suggest</u> (not proof) that the DBM in this trial were <u>resistant to active ingredients</u>:
 - Chlorantraniliprole (= Coragen) IRAC 28
 - Lambda cyhalothrin (= Warrior) IRAC 3A
 - (assume all pyrethroids)
 - Indoxacarb (= Avaunt) IRAC 22A
- Does this explain why the grower lost control of DBM population?

Grower spray program

Insecticide Spray Schedule: rate per acre

- Aug-4 (15 DAP):
 - Sniper (3A)
 - Agree WG (11A)
- Aug-15 (11 days later)
 - Lannate SP (1A)
 - Agree WG (11A)
- Aug-20?:
 - Voliam Xpress (28 + 3A) FAILED!
 - Lannate SP (1A)
- Aug-25
 - Proclaim (6)
 - Swagger (4)

- FAILED!
- effective
- -mediocre
- effective
- mediocre
- effective
- FAILED!

Note:

- Sniper & Lannate kill beneficial insects
- Make Agree have to work harder

Weak program!

DBM population spikes!

Grower spray program

Insecticide Spray Schedule cont.: rate per acre

- Aug-29 (4 days later):
 - Radiant (5)
- Sep-3 (5 days later):
 - Avaunt (22A)
 - Lannate SP (1A)
- Sep-7 (4 days later):
 - Proclaim (6)
 - Lannate SP (1A)
- Sep-10
 - Decide to disk up field!

What could have been done differently?

What made DBM population explosive was a combination of:

- Hot & dry summer causing DBM population to generate quicker
 - Respect resistance management of insecticides
 - Lannate was applied 4-times to same generation
- Broad-spectrum insecticides (Lannate, Sniper, Voliam Xpress, Swagger) wiped out beneficial insects that could have provided some control
 - Reduce use of pyrethroids and carbamates, especially early to let beneficial insects get established
- (Suspected) insecticide resistance to three active ingredients
 - Respect resistance management
 - Be cautious of resistant DBM populations on southern transplants

IRM Program for DBM in NY

(typical season)

- Lorsban or Coragen at transplant
- Rotate classes of chemistry
- > Do not use same class more than twice
- Do not apply insecticide more than 2 times

IRM Program for DBM in NY

(typical season)

IRM Program for DBM

(difficult season)

- Lorsban or Coragen at transplant
- Rotate classes of chemistry
- > Do not use same class more than twice
- > Do not apply insecticide more than 2 times

IRM Program for DBM

(difficult season)

Questions

